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Quantifying flood-driven migration is crucial 
for governments and donors, given the increas-
ing frequency of such events under global cli-
mate change as well as their potential impact 
on host economies and international security. 
However, existing work suggesting the potential 
for mass exodus remains largely unsubstantiated 
over longer time periods and larger geographic 
areas. Indeed, current pioneering work in the 
environmental migration literature suggests that 
the capacity for migration is much more lim-
ited, given that many lack the means to finance 
relocation and the social networks needed for 
finding employment (Bryan, Chowdhury, and 
Mobarak 2014).

Gray and Mueller (2012) first challenged the 
conventional narrative of “environmental refu-
gees” in Bangladesh, finding a larger effect of 
drought-related crop failure than flooding on 
permanent migration. However, the study is 
limited to selected sites, while environmental 
exposure and migration varies with local char-
acteristics, such as proximity to inland/coastal 
locations. Furthermore, their measures of 
crop failure and flood events are self-reported, 

reflecting subjective factors such as recall bias 
and reference dependence.

Tackling the external validity problem, Lu et 
al. (2016) track population movements around 
Cyclone Mahasen in 2013 using mobile phone 
network data. They find that population flows 
are largely unchanged by this event. But, lack-
ing knowledge of who is using these phones, 
this approach cannot identify vulnerabilities of 
specific populations, a key aspect of targeting 
social protection and relief. The focus on a sin-
gle event additionally limits the generalizability 
of the findings to disasters with varying duration 
and intensity.

We build on these studies by linking nation-
ally representative data with objective measures 
of flooding to shed additional light on the migra-
tion-flooding nexus in Bangladesh. Household-
level migration data are drawn from vital 
registration records, which offer the advantage 
of monitoring mobility among communities 
spanning the entire country over nearly a decade. 
To construct objective measures of flooding at 
each household’s subdistrict (upazila) of origin, 
we use satellite data, similar to Guiteras, Jina, 
and Mobarak (2015). Typical proxies of flood 
exposure are rainfall extremes, measured by 
converting raw precipitation data into anom-
aly or percentile variables (Mueller, Gray, and 
Kosec 2014). We show how inferences on flood-
ing displacement change when using an objec-
tive flooding measure versus proxies commonly 
adopted in the literature.

I.  Data

Migration.—Our data are drawn from the 
2003–2011 Sample Vital Registration System 
(SVRS), an annual survey of over 200,000 
households conducted by the Bangladesh 
Bureau of Statistics. Samples are nationally 
representative, in order to provide inter-censal 
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demographic statistics representative at the dis-
trict (zila) level. Data on migration is recorded 
for all individuals who have either been away 
for at least six months or left due to household 
displacement or marriage. This under-states 
overall out-migration, as temporary moves and 
migration by entire households are not captured 
in our data.

Rainfall.—Data on rainfall are drawn from 
two gridded monthly products, the Tropical 
Rainfall Measuring Mission (TRMM) and the 
University of Delaware (Willmott and Matsuura 
2012), as well as 34 in situ weather stations 
operated by the Bangladesh Meteorological 
Department. Subdistrict centroids are linked to 
the nearest grid point and weather station.

In situ data, when available, has the advan-
tage of more accurately capturing rainfall, but 
only within close proximity of the station. And 
the placement of weather stations and temporal 
resolution may be correlated with omitted vari-
ables (Auffhammer et al. 2013). Gridded data-
sets have the advantage of using balanced panels 
of information from nearest weather stations, 
satellites, and climate models to fill in data gaps 
(Donaldson and Storeygard 2016). However, 
the accuracy of these products is sensitive to 
the underlying data. In the case of Willmott 
and Matsuura (2012), the 124 grid points for 
Bangladesh are based on only 10 weather sta-
tions. In the case of TRMM, underlying data are 
based on satellite images, so only moderate to 
high rainfall rates can be detected, due to sensi-
tivity limitations (National Research Council of 
the National Academies 2007). When validated 
against in situ rain gauges, TRMM is found to 
overestimate precipitation during the pre-mon-
soon period and in dry regions and underesti-
mate precipitation during the monsoon period 
and in wet regions (Islam and Uyeda 2007). We 
therefore construct flood proxies using each of 
the three rainfall measures.

Epanechnikov kernel densities of the sub-
district correlations of annual precipitation 
across data products show positive correlations 
for the majority of the distributions (see the 
online Appendix). The TRMM measure has an 
average correlation of 0.66 with the Delaware 
measure, and 0.63 with the weather station 
measure. There is a more modest correlation of 
0.51 between the weather station and Delaware 
precipitation measures. We examine how these 

discrepancies might translate into different pre-
dictions for flooding displacement using the 
model described below.

Inundation Extent Measure.—Data are 
drawn from NASA Moderate Resolution 
Imaging Spectroradiometer (MODIS) sat-
ellites at 500m resolution. We construct the 
Modified Normalized Difference Water Index 
(MNDWI) (Xu 2006), which differentiates 
water and non-water features based on sur-
face reflectance.1 A pixel is defined as water if 
MNDWI ​>​ 0.1.2 Upazila-level measures are 
based on the maximum percentage of water 
pixels over all eight-day composites in the 
period. To differentiate water bodies from inun-
dation, we look at the difference in water cover-
age between the monsoon (July–December) and 
dry (January–March) seasons.

Using the TRMM measure as a reference 
point in Figure 1, we see in panel A that a signif-
icant portion of the sample exhibits either nega-
tive or low positive correlation between rainfall 
and the satellite-based measure of inundation. 
This likely reflects the complex hydrology of 
Bangladesh, a deltaic plain formed at the conflu-
ence of the Ganges, Brahmaputra, and Meghna 
Rivers. Water levels and flooding are, therefore, 
highly dependent on not only local but also 
upstream precipitation. However, in areas with 
high river density, local precipitation may play 
a relatively larger role. Indeed, in panel B, we 
see a much stronger correlation among the top 
40 percent of subdistricts with respect to river 
density.3 There are far fewer observations in the 
negative quadrant and an overall shift in the dis-
tribution to the right. This pattern is evident for 
all rainfall products (see the online Appendix). 
In the absence of satellite-based measures, this 
suggests rainfall proxies will perform better in 
areas with greater surface water coverage.

We also examine whether monsoon precipi-
tation may be a better proxy for flooding, given 
that this season accounts for well over half of 

1 Because surface images are obscured by cloud cover, 
these pixels are first removed (Xiao et al. 2006). 

2 This measure has been found to provide the most accu-
rate detection of flooded areas, compared to other commonly 
used band ratio indices and has the most stable threshold (Ji, 
Zhang, and Wylie 2009). 

3 Defined as river length as a proportion of total area. 
Derived from Global Lakes and Wetland Database. 
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yearly rainfall in most parts of Bangladesh. In 
fact, total annual precipitation has a substan-
tially stronger correlation to the satellite-based 
flood measure, with the exception of the 
University of Delaware measure (see the online 
Appendix). Longer-term precipitation measures 
better reflect overall water balance, and the lim-
itations of satellite products in detecting rainfall 
across seasons suggest that annual precipitation 
is generally a better proxy for flooding.

II.  Empirical Model

We employ a linear probability model to esti-
mate the effect of flooding in location ​j​ at ​t − 1​ 
on the probability of a household ​h​ having at 
least one migrant, ​M​ , at time ​t​ :

(1) ​​ M​hjt​​ = α ​X​hjt​​ + ​ ∑ 
m=2

​ 
5

 ​​ ​ β​m​​ ​F​mjt−1​​ + ​γ​t​​ + ​ϵ​hjt​​ .​

We adopt the convention of looking at quintiles 
of flooding, ​​F​2​​​ , ​​F​3​​​ , ​​F​4​​​ , and ​​F​5​​​ , to account for 
nonlinear impacts. Implicit in X are variables 
that affect migration decisions, such as house-
hold demographics and wealth (full list detailed 
in the online Appendix) and climate (lagged 
quintile categorical variables for growing degree 
days over the growing season, 30-year running 
averages for degree days and annual precipita-
tion). We also control for competing time-spe-
cific influences on migration by including a time 

fixed effect ​​γ​t​​​. Standard errors are clustered at 
the primary sampling unit to allow for correla-
tion in unobserved factors influencing migration.

III.  Results

Table 1 displays the point estimates from 
(1) when including the rainfall-based proxies 
(derived from weather stations and gridded data 
products) and the preferred satellite-based mea-
sure of flooding extent. Looking at the full sam-
ple (columns 1, 3, 5, and 7), we find significant 
negative associations between migration and 
the fourth and fifth quintiles across all flooding 
measures. This corroborates earlier longitudinal 
analysis using self-reported flooding measures 
(Gray and Mueller 2012). The probability of a 
household having at least one migrant under an 
extreme flooding scenario compared to no flood-
ing declines by 0.4 to 1.8 percentage points, 
which is sizable given a sample mean of 5 per-
cent. The satellite measure (column 7), however, 
reveals effects of localized flooding as well, with 
significant negative effects observed throughout 
the distribution, albeit smaller in magnitude for 
lower quintiles.

Given stronger correlation between rainfall 
proxies and satellite-based measures in areas 
with high river density, we also consider this 
sample restriction in our regressions reported in 
columns 2, 4, 6, and 8. The significant negative 
effects in the fifth quintile are still evident for 
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Figure 1. Epanechnikov Kernel Densities of Correlations between TRMM Precipitation and Inundation Measures
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two of the three rainfall proxies but not for the 
satellite-based measure. In these areas, house-
holds appear to be responding to rainfall and 
flooding in very different ways. One possible 
explanation is that, because much of the coun-
try experiences annual flooding, households 
may not perceive or respond to these events as 
shocks. To explore this possibility, we repeat 
the analysis with the satellite-based measure 
normalized by the subdistrict-specific mean and 
standard deviation over all years and report the 
results in column 9.4 The point estimates remain 
quite similar but precision increases substan-
tially. We now observe a significant negative 
effect for the first quintile. This suggests that, 
in high river density areas, households have 
already adapted to annual flooding patterns, so 
the raw measures exhibit little correlation with 
out-migration. However, relatively small devia-
tions from the norm do still produce a migration 
response. The fact that large flooding shocks 
have no effect for high river density areas but 
significant negative effects for the country as a 
whole perhaps suggests that households facing 
recurrent floods have few remaining options for 
adaptation.

IV.  Discussion

Using nationally representative data on migra-
tion in Bangladesh, we find a significant nega-

4 We cannot control for the historical average, as we do 
for rainfall, because MODIS satellites were not launched 
until 2002. 

Table 1—Migration-Flood Relationship

Station Station Del. Del. TRMM TRMM MODIS MODIS MODIS

Q2 0.002 0.010 0.001 0.002 −0.002 0.000 −0.004 −0.003 −0.005
(0.002) (0.003) (0.002) (0.002) (0.002) (0.003) (0.002) (0.003) (0.003)

Q3 0.001 −0.002 −0.002 0.004 −0.001 −0.001 −0.003 −0.000 −0.003
(0.002) (0.003) (0.002) (0.003) (0.002) (0.002) (0.002) (0.003) (0.002)

Q4 −0.004 −0.005 −0.007 −0.004 −0.009 −0.009 −0.006 −0.001 −0.003
(0.002) (0.003) (0.002) (0.003) (0.002) (0.004) (0.002) (0.003) (0.002)

Q5 −0.006 −0.003 −0.016 −0.011 −0.018 −0.014 −0.008 0.004 0.004
(0.003) (0.004) (0.003) (0.005) (0.003) (0.005) (0.003) (0.004) (0.003)

Sample Full HRD Full HRD Full HRD Full HRD HRD

Notes: N​ = 1,931,954 for full sample and 809,362 for HRD (high river density) sample. Del. = University of Delaware.  
Includes controls for household demographics, wealth, degree days, historical climate conditions, and year fixed effects. 
Standard errors clustered at primary sampling unit and presented in parentheses.

tive effect of extreme flooding on the probability 
of a household sending out at least one migrant 
in the previous year. Individuals may be more 
likely to be trapped than internally displaced 
by floods. An alternative explanation is that the 
broader benefits from extreme flooding outweigh 
the short term costs. Flooding can improve over-
all soil quality and yields in subsequent crop 
cycles (Banerjee 2010), potentially increasing 
the opportunity cost of an absent family member. 
We show that results using proxies for flooding 
from gridded datasets are qualitatively similar to 
those using satellite-based measures when focus-
ing on the top quintiles. However, the coarseness 
of these proxies may be masking other sources 
of variation. Only the satellite-based indicator 
captures the effects of localized floods (repre-
sented by the lower quintiles), which are driven 
by proximity to rivers, topography, and other 
conditions unrelated to rainfall.

Specifications using satellite-based indica-
tors alone convey a non-monotonic relation-
ship between migration and flooding. Even 
modest flooding (second and third quintiles, 
3–17 percent of the subdistrict) significantly 
deters migration, but there is a markedly larger 
effect in the fourth and particularly fifth quin-
tiles. Broader exposure to flooding throughout 
a subdistrict can reduce opportunities to access 
credit and/or utilize risk pooling mechanisms 
to finance migration. However, correlations 
between flooding and migration appear to be 
quite fragile and vary substantially across areas. 
In areas with high river density, we continue 
to observe a negative relationship between 
rainfall and migration, but this is evident for 
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our satellite-based flooding measure only after 
standardizing within subdistricts and in different 
segments of the distribution. Despite substantial 
correlation between rainfall and flooding, our 
results suggest that households experience these 
two phenomena quite differently, in part because 
many may have already adapted to annual flood-
ing patterns.
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